Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.936
Filtrar
1.
PLoS One ; 19(5): e0303154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739591

RESUMEN

BACKGROUND: Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS: Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS: DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS: PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.


Asunto(s)
Diferenciación Celular , Resinas Compuestas , Pulpa Dental , Células Madre , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Diferenciación Celular/efectos de los fármacos , Resinas Compuestas/química , Resinas Compuestas/farmacología , Supervivencia Celular/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas
2.
Biomed Mater ; 19(4)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653259

RESUMEN

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Asunto(s)
Matriz Extracelular Descelularizada , Pulpa Dental , Proteómica , Ingeniería de Tejidos , Andamios del Tejido , Pulpa Dental/citología , Proteómica/métodos , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Dodecil Sulfato de Sodio/química , Humanos , Odontogénesis , Matriz Extracelular/metabolismo , Matriz Extracelular/química
3.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 22-28, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650160

RESUMEN

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner. Furthermore, the up-regulation of Visfatin promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers in MDPC-23 cells. However, FK-866 cell growth in a dose-dependent manner induced nuclear condensation and fragmentation. FK-866-treated cells showed H&E staining and increased apoptosis compared to control cells. The expression of anti-apoptotic factors components of the mitochondria-dependent intrinsic apoptotic pathway significantly decreased following FK-866 treatment. The expression of pro-apoptotic increased upon FK-866 treatment. In addition, FK-866 activated caspase-3 and PARP to induce cell death. In addition, after treating FK-866 for 72 h, the 3/7 activity of MDPC-23 cells increased in a concentration-dependent manner, and the IHC results also confirmed that Caspase-3 increased in a concentration-dependent. Therefore, the presence or absence of NAMPT expression in dentin cells was closely related to cell proliferation and formation of extracellular substrates.


Asunto(s)
Apoptosis , Proliferación Celular , Nicotinamida Fosforribosiltransferasa , Odontoblastos , Nicotinamida Fosforribosiltransferasa/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Odontoblastos/efectos de los fármacos , Odontoblastos/citología , Odontoblastos/metabolismo , Animales , Ratones , Línea Celular , Citocinas/metabolismo , Caspasa 3/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Acrilamidas/farmacología , Odontogénesis/efectos de los fármacos
4.
J Cell Mol Med ; 28(8): e18297, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613351

RESUMEN

Autophagy is a cellular process that is evolutionarily conserved, involving the sequestration of damaged organelles and proteins into autophagic vesicles, which subsequently fuse with lysosomes for degradation. Autophagy controls the development of many diseases by influencing apoptosis, inflammation, the immune response and different cellular processes. Autophagy plays a significant role in the aetiology of disorders associated with dentistry. Autophagy controls odontogenesis. Furthermore, it is implicated in the pathophysiology of pulpitis and periapical disorders. It enhances the survival, penetration and colonization of periodontal pathogenic bacteria into the host periodontal tissues and facilitates their escape from host defences. Autophagy plays a crucial role in mitigating exaggerated inflammatory reactions within the host's system during instances of infection and inflammation. Autophagy also plays a role in the relationship between periodontal disease and systemic diseases. Autophagy promotes wound healing and may enhance implant osseointegration. This study reviews autophagy's dento-alveolar effects, focusing on its role in odontogenesis, periapical diseases, periodontal diseases and dental implant surgery, providing valuable insights for dentists on tooth development and dental applications. A thorough examination of autophagy has the potential to discover novel and efficacious treatment targets within the field of dentistry.


Asunto(s)
Implantes Dentales , Enfermedades Periodontales , Humanos , Autofagia , Odontogénesis , Inflamación
5.
FASEB J ; 38(7): e23608, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593315

RESUMEN

Tooth development is a complex process involving various signaling pathways and genes. Recent findings suggest that ion channels and transporters, including the S100 family of calcium-binding proteins, may be involved in tooth formation. However, our knowledge in this regard is limited. Therefore, this study aimed to investigate the expression of S100 family members and their functions during tooth formation. Tooth germs were extracted from the embryonic and post-natal mice and the expression of S100a6 was examined. Additionally, the effects of S100a6 knockdown and calcium treatment on S100a6 expression and the proliferation of SF2 cells were examined. Microarrays and single-cell RNA-sequencing indicated that S100a6 was highly expressed in ameloblasts. Immunostaining of mouse tooth germs showed that S100a6 was expressed in ameloblasts but not in the undifferentiated dental epithelium. Additionally, S100a6 was localized to the calcification-forming side in enamel-forming ameloblasts. Moreover, siRNA-mediated S100a6 knockdown in ameloblasts reduced intracellular calcium concentration and the expression of ameloblast marker genes, indicating that S100a6 is associated with ameloblast differentiation. Furthermore, S100a6 knockdown inhibited the ERK/PI3K signaling pathway, suppressed ameloblast proliferation, and promoted the differentiation of the dental epithelium toward epidermal lineage. Conclusively, S100a6 knockdown in the dental epithelium suppresses cell proliferation via calcium and intracellular signaling and promotes differentiation of the dental epithelium toward the epidermal lineage.


Asunto(s)
Calcio , Fosfatidilinositol 3-Quinasas , Animales , Ratones , Ameloblastos/metabolismo , Calcio/metabolismo , Diferenciación Celular , Células Epiteliales , Odontogénesis/genética , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Int J Dev Biol ; 68(1): 19-24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591690

RESUMEN

Tooth formation is a process tightly regulated by reciprocal interactions between epithelial and mesenchymal tissues. These epithelial-mesenchyme interactions regulate the expression of target genes via transcription factors. Among the regulatory elements governing this process, Epiprofin/Sp6 is a zinc finger transcription factor which is expressed in the embryonic dental epithelium and in differentiating pre-odontoblasts. Epiprofin knockout (Epfn-/-) mice present severe dental abnormalities, such as supernumerary teeth and enamel hypoplasia. Here, we describe dentin defects in molars and incisors of Epfn-/- mice. We observed that in the absence of Epfn, markers of early odontoblast differentiation, such as alkaline phosphatase activity, Dsp/Dpp expression, and Collagen Type I deposition, are downregulated. In addition, the expression of tight and gap junction proteins was severely impaired in the predontoblastic cell layer of developing Epfn-/- molars. Altogether, our data shows that Epfn is crucial for the proper differentiation of dental mesenchymal cells towards functional odontoblasts and subsequent dentin-matrix deposition.


Asunto(s)
Displasia de la Dentina , Odontoblastos , Ratones , Animales , Odontoblastos/metabolismo , Displasia de la Dentina/metabolismo , Diferenciación Celular , Odontogénesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 418-425, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38636995

RESUMEN

Mesenchymal stem cells, under spatiotemporal regulation of genes and microenvironment, are capable of spontaneously aggregating into dense regions, a phenomenon known as mesenchymal condensation. Mesenchymal condensation is an evolutionarily conserved developmental event that is critical in initiating morphogenesis of teeth and systemic organs. Mesenchymal stem cells hold the intrinsic ability to self-assemble in culture, and the generation of stem cell aggregates based on this property that mimics developmental mesenchymal condensation has become a potent and promising approach in regenerative medicine. This review discusses the mesenchymal condensation principles and its role as well as mechanism in tooth morphogenesis, as well as the engineering strategies for constructing mesenchymal stem cell aggregates and their application experience in tooth regeneration. It aims to start from the perspective of "development-inspired regeneration" and provide insights into understanding stem cell developmental biology and establishing new organ regenerative strategies.


Asunto(s)
Células Madre Mesenquimatosas , Regeneración , Medicina Regenerativa , Ingeniería de Tejidos , Diente , Células Madre Mesenquimatosas/citología , Humanos , Diente/crecimiento & desarrollo , Ingeniería de Tejidos/métodos , Odontogénesis , Diferenciación Celular
8.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 502-506, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38637005

RESUMEN

Methylation modification is one of the most common epigenetic modification regulation in eukaryotes, including histone methylation, DNA methylation, RNA methylation, etc., which plays an important regulatory role in physiological processes and pathologic occurrence and development. Tooth root development is carried out by both epithelial and mesenchymal cells and involves a variety of cell-molecular interactions. In recent years, a large number of studies have found that methylation plays a key role in the regulation of tooth root development and expands the mechanism network of tooth root development. In this paper, we review the role and mechanism of methylation modification during root development.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Raíz del Diente , Raíz del Diente/crecimiento & desarrollo , Humanos , Histonas/metabolismo , Odontogénesis , Metilación , Células Epiteliales/metabolismo
9.
Int J Oral Sci ; 16(1): 25, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480698

RESUMEN

Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10afl/fl mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10afl/fl mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10afl/fl mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10afl/fl mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10afl/fl molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.


Asunto(s)
Raíz del Diente , Diente , Humanos , Femenino , Ratones , Animales , Raíz del Diente/metabolismo , Odontogénesis/genética , Transducción de Señal , Esmalte Dental , Células Epiteliales , Proteínas del Tejido Nervioso/metabolismo , Proteínas Wnt/metabolismo
10.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546858

RESUMEN

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Pulpa Dental , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Odontogénesis , Osteogénesis , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/citología , Supervivencia Celular/efectos de la radiación , Odontogénesis/efectos de la radiación , Células Cultivadas , Luz Roja
11.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38438145

RESUMEN

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Asunto(s)
Glicosaminoglicanos , Ácido Hialurónico , Ratones , Animales , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogénesis , Dermatán Sulfato
12.
Clin Oral Investig ; 28(3): 198, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448657

RESUMEN

OBJECTIVES: This study aimed to use all permanent teeth as the target and establish an automated dental age estimation method across all developmental stages of permanent teeth, accomplishing all the essential steps of tooth determination, tooth development staging, and dental age assessment. METHODS: A three-step framework for automatically estimating dental age was developed for children aged 3 to 15. First, a YOLOv3 network was employed to complete the tasks of tooth localization and numbering on a digital orthopantomogram. Second, a novel network named SOS-Net was established for accurate tooth development staging based on a modified Demirjian method. Finally, the dental age assessment procedure was carried out through a single-group meta-analysis utilizing the statistical data derived from our reference dataset. RESULTS: The performance tests showed that the one-stage YOLOv3 detection network attained an overall mean average precision 50 of 97.50 for tooth determination. The proposed SOS-Net method achieved an average tooth development staging accuracy of 82.97% for a full dentition. The dental age assessment validation test yielded an MAE of 0.72 years with a full dentition (excluding the third molars) as its input. CONCLUSIONS: The proposed automated framework enhances the dental age estimation process in a fast and standard manner, enabling the reference of any accessible population. CLINICAL RELEVANCE: The tooth development staging network can facilitate the precise identification of permanent teeth with abnormal growth, improving the effectiveness and comprehensiveness of dental diagnoses using pediatric orthopantomograms.


Asunto(s)
Aprendizaje Profundo , Humanos , Niño , Tercer Molar , Odontogénesis , Radiografía Panorámica
13.
Proc Natl Acad Sci U S A ; 121(11): e2321162121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38446853

RESUMEN

According to Dollo's Law of irreversibility in evolution, a lost structure is usually considered to be unable to reappear in evolution due to the accumulation over time of mutations in the genes required for its formation. Cypriniform fish are a classic model of evolutionary loss because, while they form fully operational teeth in the ventral posterior pharynx, unlike other teleosts, they do not possess oral teeth. Paleontological data show that Cypriniforms, a clade of teleost fish that includes the zebrafish, lost their oral teeth 50 to 100 Mya. In order to attempt to reverse oral tooth loss in zebrafish, we block the degradation of endogenous levels of retinoic acid (RA) using a specific inhibitor of the Cyp26 RA degrading enzymes. We demonstrate the inhibition of endogenous RA degradation is sufficient to restore oral tooth induction as marked by the re-appearance of expression of early dental mesenchyme and epithelium genes such as dlx2b and sp7 in the oral cavity. Furthermore, we show that these exogenously induced oral tooth germs are able to be at least partly calcified. Taken together, our data show that modifications of signaling pathways can have a significant effect on the reemergence of once-lost structures leading to experimentally induced reversibility of evolutionary tooth loss in cypriniforms.


Asunto(s)
Perciformes , Pérdida de Diente , Animales , Pez Cebra , Odontogénesis
14.
Eur Arch Paediatr Dent ; 25(2): 191-199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38502521

RESUMEN

INTRODUCTION: A former study on orthopantomograms from young children with abnormal dental development (not canine ectopia) demonstrated that the tooth bud of the mandibular canine, compared to a stable longitudinal canine axis, could be located normally, anteriorly or posteriorly, with close relation to the first premolar. AIM: The aim of the present study is to analyse on orthopantomograms if the canine axis can demonstrate where the ectopic mandibular canine started tooth formation. MATERIALS: The material consists of orthopantomograms with ectopic mandibular canines and presence of primary mandibular canines from 47 cases (29 cases 9-21 years old and 18 cases with unknown ages). The primary canines demonstrated from minor apical resorption to more severe apical resorption. METHODS: Based on canine maturity, location of the canine axes and the interrelationships between the roots of the permanent canine and first premolar, the location from where the canine started tooth formation was determined. Canine maturity. Maturity stage below half root length and maturity stage above half root length revealed that 11 ectopic canines had less than half root length and 36 cases more than half root length. Canine axes. The canine axis, through the length of the primary canines Ax, is inserted on drawings of the orthopantomograms using the tracing programme Inkscape®. Interrelationship between roots. By visual inspection, the distance between the canine and first premolar was designated close distance, normal distance and extended distance. RESULTS: The results are divided into 3 groups. Group 1: The initial site of the permanent ectopic canine is located within the canine axis (6 cases). Group 2: The initial site of the permanent ectopic canine is located posterior to the canine axis (36 cases). Group 3: The initial site of the permanent ectopic canine is located anterior to the canine axis (5 cases). CONCLUSION: The study explained that the canine axis could divide cases of ectopic canines into three groups according to the location from where tooth formation starts. For getting closer to the pattern of the ectopic canine eruption, it is necessary to analyse series of orthopantomograms taken from the same individual over several years.


Asunto(s)
Diente Canino , Mandíbula , Radiografía Panorámica , Erupción Ectópica de Dientes , Diente Canino/diagnóstico por imagen , Humanos , Niño , Adolescente , Erupción Ectópica de Dientes/diagnóstico por imagen , Mandíbula/diagnóstico por imagen , Adulto Joven , Masculino , Femenino , Raíz del Diente/diagnóstico por imagen , Raíz del Diente/anomalías , Odontogénesis/fisiología , Diente Primario/diagnóstico por imagen , Diente Premolar/diagnóstico por imagen , Diente Premolar/anomalías
15.
J Dent Res ; 103(4): 345-358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407002

RESUMEN

Tooth development and regeneration are regulated through a complex signaling network. Previous studies have focused on the exploration of intracellular signaling regulatory networks, but the regulatory roles of extracellular networks have only been revealed recently. Proteoglycans, which are essential components of the extracellular matrix (ECM) and pivotal signaling molecules, are extensively involved in the process of odontogenesis. Proteoglycans are composed of core proteins and covalently attached glycosaminoglycan chains (GAGs). The core proteins exhibit spatiotemporal expression patterns during odontogenesis and are pivotal for dental tissue formation and periodontium development. Knockout of core protein genes Biglycan, Decorin, Perlecan, and Fibromodulin has been shown to result in structural defects in enamel and dentin mineralization. They are also closely involved in the development and homeostasis of periodontium by regulating signaling transduction. As the functional component of proteoglycans, GAGs are negatively charged unbranched polysaccharides that consist of repeating disaccharides with various sulfation groups; they provide binding sites for cytokines and growth factors in regulating various cellular processes. In mice, GAG deficiency in dental epithelium leads to the reinitiation of tooth germ development and the formation of supernumerary incisors. Furthermore, GAGs are critical for the differentiation of dental stem cells. Inhibition of GAGs assembly hinders the differentiation of ameloblasts and odontoblasts. In summary, core proteins and GAGs are expressed distinctly and exert different functions at various stages of odontogenesis. Given their unique contributions in odontogenesis, this review summarizes the roles of proteoglycans and GAGs throughout the process of odontogenesis to provide a comprehensive understanding of tooth development.


Asunto(s)
Glicosaminoglicanos , Odontogénesis , Ratones , Animales , Glicosaminoglicanos/metabolismo , Ratones Noqueados , Odontogénesis/genética , Proteínas de la Matriz Extracelular/metabolismo , Germen Dentario/metabolismo
16.
J Mol Histol ; 55(2): 149-157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38407765

RESUMEN

Cytodifferentiation of odontogenic cells, a late stage event in odontogenesis is based on gene regulation. However, studies on the identification of the involved genes are scarce. The present study aimed to search for molecules for the cytodifferentiation of ameloblastic cells in rats. Differential display-PCR revealed a differentially expressed gene between cap/early bell stage and hard tissue formation stage in molars. This gene was identified as N-myc Downregulated Gene 1 (Ndrg1), which is the first report in tooth development. Real time PCR and western blotting confirmed that the mRNA level of Ndrg1 was higher during enamel formation than the cap stage. Ndrg1 expression was upregulated in the early bell, crown, and root stages in a time-dependent manner. These patterns of expression were similar in Ndrg2, but Ndrg3 and Ndrg4 levels did not change during the developmental stages. Immunofluorescence revealed that strong immunoreactivity against Ndrg1 were detected in differentiated ameloblasts only, not inner enamel epithelium, odontoblasts and ameloblastic cells in defected enamel regions. Alkaline phosphatase and alizarin red s stains along with real time PCR, revealed that Ndrg1 and Ndrg2 were involved in cytodifferentiation and enamel matrix mineralization by selectively regulating amelogenin and ameloblastin genes in SF2 ameloblastic cells. These results suggest that Ndrg may play a crucial functional role in the cytodifferentiation of ameloblasts for amelogenesis.


Asunto(s)
Amelogénesis , Odontogénesis , Animales , Ratas , Ameloblastos/metabolismo , Amelogénesis/genética , Diente Molar , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/genética , Odontogénesis/genética , Proteínas/metabolismo
17.
Int J Oral Sci ; 16(1): 11, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302479

RESUMEN

ABSTARCT: Odontogenic maxillary sinusitis (OMS) is a subtype of maxillary sinusitis (MS). It is actually inflammation of the maxillary sinus that secondary to adjacent infectious maxillary dental lesion. Due to the lack of unique clinical features, OMS is difficult to distinguish from other types of rhinosinusitis. Besides, the characteristic infectious pathogeny of OMS makes it is resistant to conventional therapies of rhinosinusitis. Its current diagnosis and treatment are thus facing great difficulties. The multi-disciplinary cooperation between otolaryngologists and dentists is absolutely urgent to settle these questions and to acquire standardized diagnostic and treatment regimen for OMS. However, this disease has actually received little attention and has been underrepresented by relatively low publication volume and quality. Based on systematically reviewed literature and practical experiences of expert members, our consensus focuses on characteristics, symptoms, classification and diagnosis of OMS, and further put forward multi-disciplinary treatment decisions for OMS, as well as the common treatment complications and relative managements. This consensus aims to increase attention to OMS, and optimize the clinical diagnosis and decision-making of OMS, which finally provides evidence-based options for OMS clinical management.


Asunto(s)
Sinusitis Maxilar , Rinosinusitis , Humanos , Sinusitis Maxilar/diagnóstico por imagen , Sinusitis Maxilar/etiología , Sinusitis Maxilar/terapia , Consenso , Seno Maxilar , Odontogénesis
18.
Med Sci (Paris) ; 40(1): 16-23, 2024 Jan.
Artículo en Francés | MEDLINE | ID: mdl-38299898

RESUMEN

Tooth formation results from specific epithelial-mesenchymal interactions, which summarize a number of developmental processes. Tooth anomalies may thus reflect subclinical diseases of the kidney, bone and more broadly of the mineral metabolism, skin or nervous system. Odontogenesis starts from the 3rd week of intrauterine life by the odontogenic orientation of epithelial cells by a first PITX2 signal. The second phase is the acquisition of the number, shape, and position of teeth. It depends on multiple transcription and growth factors (BMP, FGF, SHH, WNT). These ecto-mesenchymal interactions guide cell migration, proliferation, apoptosis and differentiation ending in the formation of the specific dental mineralized tissues. Thus, any alteration will have consequences on the tooth structure or shape. Resulting manifestations will have to be considered in the patient phenotype and the multidisciplinary care, but also may contribute to identify the altered genetic circuity.


Title: La dent : un marqueur d'anomalies génétiques du développement. Abstract: L'odontogenèse résulte d'évènements reflétant de multiples processus impliqués dans le développement : crêtes neurales, interactions épithélio-mésenchymateuses, minéralisation. Les anomalies dentaires sont donc d'excellents marqueurs de l'impact de mutations de gènes qui affectent différents systèmes biologiques, tels que le métabolisme minéral, l'os, le rein, la peau ou le système nerveux. Dans cette revue, nous présentons de façon synthétique les gènes impliqués dans plusieurs maladies rares au travers de défauts des dents caractéristiques, de nombre, de forme et de structure.


Asunto(s)
Transducción de Señal , Diente , Humanos , Epitelio , Diente/metabolismo , Odontogénesis/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica
19.
J Anat ; 244(6): 1067-1077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258312

RESUMEN

Fibroblast growth factor (FGF) signalling plays a crucial role in the morphogenesis of multiple tissues including teeth. While the role of the signal has been studied in tooth crown development, little is known about root development. Of several FGF ligands involved in hard tissue formation, we suggest that FGF18 regulates the development of murine tooth roots. We implanted FGF18-soaked heparin beads into the lower first molar tooth buds at postnatal day 6 (P6), followed by transplantation under the kidney capsule. After 3 weeks, FGF18 significantly facilitated root elongation and periodontal tissue formation compared to the control. In situ hybridisation showed that Fgf18 transcripts were initially localised in the dental pulp along Hertwig's epithelial root sheath at P6 and P10 and subsequently in the dental follicle cells at P14. Fgf receptors were expressed in various dental tissues during these stages. In vitro analysis using the dental pulp stem cells revealed that FGF18 inhibited cell proliferation and decreased expression levels of osteogenic markers, Runx2, Alpl and Sp7. Consistently, after 1 week of kidney capsule transplantation, FGF18 application did not induce the expression of Sp7 and Bsp, but upregulated Periostin in the apical region of dental mesenchyme in the grafted molar. These findings suggest that FGF18 facilitates molar root development by regulating the calcification of periodontal tissues.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Transducción de Señal , Raíz del Diente , Animales , Factores de Crecimiento de Fibroblastos/metabolismo , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , Ratones , Transducción de Señal/fisiología , Diente Molar/embriología , Odontogénesis/fisiología
20.
Sci Rep ; 14(1): 2497, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291068

RESUMEN

The classification and localization of odontogenic lesions from panoramic radiographs is a challenging task due to the positional biases and class imbalances of the lesions. To address these challenges, a novel neural network, DOLNet, is proposed that uses mutually influencing hierarchical attention across different image scales to jointly learn the global representation of the entire jaw and the local discrepancy between normal tissue and lesions. The proposed approach uses local attention to learn representations within a patch. From the patch-level representations, we generate inter-patch, i.e., global, attention maps to represent the positional prior of lesions in the whole image. Global attention enables the reciprocal calibration of path-level representations by considering non-local information from other patches, thereby improving the generation of whole-image-level representation. To address class imbalances, we propose an effective data augmentation technique that involves merging lesion crops with normal images, thereby synthesizing new abnormal cases for effective model training. Our approach outperforms recent studies, enhancing the classification performance by up to 42.4% and 44.2% in recall and F1 scores, respectively, and ensuring robust lesion localization with respect to lesion size variations and positional biases. Our approach further outperforms human expert clinicians in classification by 10.7 % and 10.8 % in recall and F1 score, respectively.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Neurales de la Computación , Radiografía Panorámica , Odontogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA